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The present paper consists of two parts. In part 1, a new technigue
of treating Neumann boundary conditions with an explicit Chebyshev
collocation method is developed. Any Neumann boundary condition
can be satisfied by adjusting all the Chebyshev coefficients of a
solution, which resuits in a small influence on the solution and its
derivatives except at the boundary. Comparisons between the new
technigue and several raditional ones are made for a one-dimensional
advection-diffusion problem, which confirms the superiority of the
new technique. The spectral accuracy of the new technique is also
demonstrated. In part 2, a Chebyshev collocation code for the com-
pressible Navier-Stokes equations is developed to solve the high-speed
flows around a sphere. Good resolutions are obtained in the boundary
layer by using the new technique, and comparison between the
calculation and the experiment shows good agreement. € 1993
Academic Press, Inc.

INTRODUCTION

The treatment of boundary conditions has been a signifi-
cant problem in spectral methods. Since global eigenfunc-
tion expansions are used in spectral methods, solutions are
more sensitive to local behavior than other numerical
methods. If boundary conditions are not imposed
accurately, they will produce local errors which in turn
degrade the global accuracy of the solution and often iead
to the onset of instability.

For periodic problems, Fourier series are used because
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boundary conditions are satisfied automatically and no
extra process i1s needed. For nonperiodic problems,
Chebyshev polynomials are usually utilized, and solutions
can be obtained up to boundaries without taking any
special measure uniess the governing equation is singular
there. In spite of that, the boundary conditions must be
incorporated into the algorithm for solving the governing
equation.

Several techniques have been proposed to treat boundary
conditions in spectral methods. The most traditional one is
the tau method which is characterized by expanding both
the boundary conditions and the governing equation in
spectral space. This method can also be recognized as an
extension of the Galerkin method because the way of trans-
forming the governing equation into spectral spacc is
similar in both methods. So far the Chebyshev—tau method- .
has been successfully applied to the Orr-Sommerfeld
stability equation [ 1], the Poisson equation [2], and the
incompressible Navier-Stokes equations [3].

In collocation schemes, boundary conditions can be dealt
with in both physical and spectral space. In general,
Dirichlet conditions are directly imposed on the solu-
tions in physical space, whereas Neumann conditions are
troublesome. Gottlieb et al. [4, 5] proposed the charac-
teristic variable operating method, not only in finite dif-
ference and finite element methods, but aiso in spectral
methods. Streett ef al. [6] imposed Neumann conditions on
the intermediate solutions of the boundary value problems
in physical space. However, this led to a substantial
deterioration of the convergence rate of iteration. Hussaini
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et al. [ 7] adjusted the highest Chebyshev coefficient to fit
the Neumann condition in their explicit time-advancing
Euler equations code. Furthermore, Canuto and Quar-
teroni [8] suggested implicit time-advancing schemes to
avoid instability at boundaries. Canuto [97 also proposed
an implicit treatment of boundary conditions, which can be
applied to both boundary value problems and initial-
boundary value ones. At internal boundaries Patera’s
spectral element method [10] gives good solutions for
incompressible flows.

So far our study has focused on developing spectral
schemes for high-speed flows which have been rarely treated
with spectral methods. This is due to a strong non-linearity
which makes the shock wave and boundary conditions
more difficult to treat. The calculation of supersonic flows
around a cylinder was carried out by Hussaini er a/. [ 7] for
the two-dimensional Euler equations. We [11, 127 also
performed the calculations of flows around a sphere and the
forward part of a shuttle-like body by solving the three-
dimensional Euler equations written in generalized coor-
dinates. In order to calculate viscous flows, we developed a
code to solve the axisymmetric compressible Navier—Stokes
equations [13, 14]. More recently, Kopriva et al [15]
succeeded in well-converged solutions on biunt body
problems.

In all our previous work, the treatment of Neumann con-
ditions has been a difficult problem. Our early treatment
aimed at preventing the divergence of solution due to the
propagation of errors at boundaries. In particular, when
solving viscous high-speed flows, resolution of the boundary
layer has a close relation to the treatment of boundary
conditions. Therefore, it is required to develop a simple,
accurate, and stable method to treat Neumann conditions.

In the present paper, we introduce a new technique of
treating Neumann conditions for explicit Chebyshev
collocation methods. The contents are divided into two
parts. In part !, a one-dimensional advection—diffusion
problem is chosen as a test problem to verify the present
method, where the principle of our new techmique is
explained, and its effectiveness is shown by comparing
between the new technique and the traditional ones. In part
2, the algorithm of solving the compressible Navier—Stokes
equations for high-speed flows around a sphere is described
and the application of the new technique to this code is
discussed.

PART 1. ONE-DIMENSIONAL ADVECTION-
DIFFUSION PROBLEM

1.1. Relations between Boundary Conditions
and Chebyshev Coefficients

Consider the Chebyshev expansion of a solution u(x, )
written as
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(1)

N
u(x, 1)= Y, #,(t) cos na,
n=0

where i, is the coefficient of expansion, & is the number of
truncated terms, and

X= —COS & O€agn, —1<xg)

(2)

The first and second spatial derivatives can also be
expressed likewise as

1)

1
=

k-4

u (x,t) (¢) cos nuo,

(3)

It

1 [z IZMZ

(=

U (x, 1) #'2(1) cos na,

(4)

x

where there are the recurrence relations between the
coefficient i,, #'", and 42,

CaV=a0), +2n+ i, (0<n<N—1),

. \ (5)
&}wl')=ﬂ5'§{+-1=0’

Col =i, +2nt i), @<n<N-D.
i =, =0,

with
2 n=00rN
= * 7
C {1 l<nsN-—1 7)

Then, the following equations are derived from Eq. (1) at

the boundaries x=—1 and 1,
N
u(*ls t)= Z ﬁn(t)s (8)
n==9
N
u(l, )=y (=1)"i,l1), (9}
n=0
N
ux(—ls t]= - Z nzan(t)a (10)
n=0
N
wdl, == (=1 n'a ), (11)
n=0

These give the relations between the boundary values in
physical space and the coefficients in Chebyshev space, in
which each boundary is composed of N + 1 coefficients. By
means of them, a number of methods of dealing with bound-
ary conditions have been proposed. These relations are dif-
ferently treated, depending on implicit and explicit schemes.
In implicit schemes, they are incorporated into the system of
equations, so that the resulting coefficients exactly satisfy
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both the governing equations and the boundary conditions
[1]. In contrast, boundary conditions are separated from
the process of solving the governing equations in explicit
schemes, and the solutions or the coefficients should be
modified at each time step so as to satisfy the boundary
conditions after integrating the governing equations [7].

1.2. Test Problem

In order to simply discuss explicit schemes, we take up the

following one-dimensional advection-diffusion problem:
U+ U = Uy (12)

A Fourier sine series with exponentially convergent
coefficients is set as the initial condition:

M
u(x,0)= Y e~ sinmnx.

m=1

(13)

Note that M is independent of N in Eq. {1), and throughout
the present calculations, M is set to 16,
If the Neumann condition

M

ud =1, Demer = 3, mme” """ cos mn(—1~1)  (14)
m=1
and the Dirichlet condition
M 2
W1, Doaee= 3, €~ """ sin mu(l —1) (15)
m=1
are satisfied at the two boundaries, x= —1 and 1, respec-
tively, the exact solution becomes
M 2
U(X, Depaar = 2. €~ "sinmu{x—1¢).  (16)
m=1

The solution is composed of various waves which
converge to zero when ¢ — oo.

There exist at least two spectral methods to~explicitly
solve this problem: the collocation method and the tau
method, which will be discussed in the following subsec-
tions. For time integration, the first-order explicit Euler
method is utilized in both methods. Before introducing our
new technique, we first discuss two traditional techniques of
treating Neumann boundary conditions in collocation
methods.

1.3. Traditional Treatment of Boundary
Conditions in Collocation Methods

The Chebyshev collocation method is characterized by
discretizing the spatial coordinate x as
(0<j<N).

x;= —cos(mj/N) (17)
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Thus Eq. (1) becomes

il waf
3

w(x;, t)= 3 i,l(r)cos (18)
n=0 N
where the Chebyshev coefficients are expressed by
. N1 nnj
u,,(l)-—_C"Njgo-C:u{xj, I)COSW 0gn<s N).
(19)

Equations (3) and (4) for the spatial derivatives of the
solution can also be discretized in the same fashion with
Eq. (18), and the partial differential equation (12) is
integrated in terms of time.

Since the solutions are obtained in physical space, the
Dirichlet condition of Eq. (15) can be directly imposed at
every time step, namely

WL Oy =u(l, exacrs (20)
where the superscript “new” indicates the value after
adjustment of the boundary condition.

On the other hand, the imposing of the Neumann condi-
tion needs more elaboration. The simplest way usually used
in finite difference methods is to extrapoiate the solution up
to the boundary. The first-order extrapolation at x= —1 is
represented as

u (=1, 1) = uxy, )= (= Xo) (=1, Degaer- (21)
Obviously Eqg.(21) has a second-order error of
of(x,—x4)*], and the new boundary value is determined
locally. This kind of extrapolation works well in the present
problem but frequently breaks down for highly unstable
problems, for example, the high-speed flow probiem
described in Part 2.

The second way is to force Eq.(10) to satisfy the
Neumann condition in Chebyshev space. However, unlike
implicit schemes, the coefficients cannot be determined
uniquely without any additional condition. Hussaini et al.
[7] proposed a method in their supersonic inviscid flow
code, where the coefficient of the highest wave number is
adjusted. This procedure can be applied to the present
problem as

N-1 .
ﬁ;’:w(t) = _[ux( - 1: t)exacl + z nzﬁgid(t)]/Nz- (22)
n=0

This method introduces a local error in Chebyshev space
and in turn yields a global error in physical space. Suppose
that the adjusted quantity is

Ay (1) =ay™ (1) —ayi (1), (23)
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then the alteration of the solution in physical space is

Au(x, t) = Aii (1) cos Na. (24)
The spatial distribution of Au(x, t)/4%d,{t) is illustrated in
Fig. 1, where the solid circles indicate the values at colloca-
tion points. It is seen that the alteration has the same
magnitude at each collocation point. Since each coefficient,
which is multiplied by the square of its wave number »n (see
Eqgs. (10) and (11)), contributes to «, at the boundaries,
adjusting the coefficient of the highest wave number leads to
a smalier adjusted quantity than any one of the other
modes. It should be noted that the alteration also occurs in
the spatial derivatives, which will be discussed in the next
subsection.

1.4. Global Coefficient Adjustment Method

A more accurate method comes from the following con-
sideration: if the Neumann condition is imposed only by
changing the boundary value, its influence may be restricted
to the neighborhood of the boundary. For this purpose, we
first sec what will happen when the solution at the boundary
is adjusted by a small quantity du(—1, ¢) as

(=1, ) =u (=1, 1)+ du{ —1, 1). (25)
From Eq. (19), the new coefficients become
A1) = g%+ —— du(—1,1)  (0<n<N).  (26)
" C.N
[ 1.0 T
Au(x
Au(Y)
0.6+
-11p —Oi 5 ® 00 3 5 a
X
.51
3 1.0
FIG. 1. Spatial distribution of Au(x, t}/di,{t} by the highest

coefficient adjustment method for N = 16.
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This implies that all the coeflicients are shifted by the same
quantity du(—1, t)/N, which becomes half of that when
n=0 or N. Transforming Eq. (26) to physical space by
means of Eq. (1), we have an expression in physical space,

u™™(x, 1) =u""(x, t) + Au(x, 1), (27

where

Au(x, 1)= M

. 28)

yoq
Y —cos na.
n=40 C"

The distribution of Adu(x, t)/du{—1,¢) is illustrated in
Fig. 2. Note that it has a largest value at the left boundary,
and converges to zero toward the right boundary.
Moreover, it vanishes at all the colliocation points, except at
the left boundary.

We can take advantage of this characteristic to treat
Neumann boundary conditions. If the coefficients, #5* are
already known, they can be adjusted in the form of Eq. (26)
so as to satisfy the Neumann condition (Eq. (10}), namely

i 1
= T 0+ oy A1) | = e (29)
n=0 H

Consequently, the unknown value of du( —1, r) is obtained
from this relation. Then the adjustments are performed in
both Chebyshev and physical spaces, but separately. The
coefficients themselves are adjusted according to Eq. (26),
while the solutions are altered just by adding Au({—1, 1) at
the left boundary. Note that it is not necessary to obtain

T 1.0-’-
Au(x,t)
Au(—1,t)
0.5+
[\ /\f T e -~ et~ et
14 A -0 0l a 0.5 1.0
x

0.5+

-1.0+

F1G. 2. Spatial distribution of Au(x, f)/du{—1,¢) by the
coefficient adjustment method for ¥ =16.

global
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the physical space solution by transforming the adjusted
coefficients and that the adjusted coefficients are in a
straightforward way used in the next step computation. This
makes the algorithm compact and saves much cpu time. We
call this the global coefficient adjustment method.

Incidentaily, a similar procedure can also be taken if it is
necessary to satisfy the Neumann boundary condition at the
right boundary. The expressions corresponding to Eqs. (26)
and (29) at x =1 are written as

(—1)"
C,N

ﬁ:cw(:)=ﬁ:‘d(z)+ Au(l, !) (OSHSN)s (30)

N

_Z(,

n=0

=11, Dexacr-

1)+ n? [ﬁﬁ”(t) +(g—lﬁ):du(l, t):l

n

(31)

Let us sum up the differences of enforcing boundary con-
ditions with the highest coefficient adjustment method and
the global coefficient adjustment method, when the same
quantity du(— 1, r) is adjusted in both methods. Comparing
Figs. 1 and 2, the former has alterations on a solution at all
the coliocation points, while the latter has no change at
those pomnts except at the left boundary. Furthermore, the
former method can give an accurate Neumann condition at
the left boundary, but the error in «, of the same quantity
appears at the right boundary due to a sharp slope there,
although «, does not change at internal collocation points
since it has a peak value there. It is also obvious from these
figures that the errors of the second derivative with the
former method are much larger than those of the latter
method. Moreover, both the first and second derivatives are
less influenced in the latter method as the right boundary is
approached.

1.5. Tau Method

For comparison with the collocation method, we will
demonstrate the tau method in this subsection. Substituting
Egs. (1), (3), and {4) into Eq. (12), we have

di (1)
t

u a0 =a2(1).

(32)

This equation is integrated in terms of time to get the
coefficients &, (0<n< N—2) at the new time step. The
remaining two coefficients of the highest and second-highest
wave numbers, #, and i, _, are utilized to satisfy the
boundary conditions, which are calculated by solving the
following system of equations:

— (V= 12, (1) — N3 (1) =

N-2
=ux(_1! [)exacl+ Z ”2&21(1(:)’
n=0

(33)
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— e (1) + 2% (1)
N-—2

I’ ’[)cxact_ Z (_I)" ﬁg]d([)'

n=0

(34

=u(—

This method induces errors in the coefficients of the
highest two wave numbers, which result in global errors in
physical space. The influence of change in the coefficient of
the highest wave number, #, on the solution was discussed
previously. In the same way, we define for &, _,

iy ()= ay” (1) —ayL (), (35)
which alters the physical solution by
Au(x, 1y=Aditp_,(t)cos(N —1)a. - (36)

The distribution of Aulx, t)/4d y_ (2) is illustrated in Fig. 3.
While du(x, r)/44 (1) is an even function in terms of x,
Au(x, 1}/ Ati,_ (¢} is an odd one. Therefore, in many cases,
they can be properly combined to accurately satisfy both left
and right boundary conditions.

An important difference between the collocation method
and the tau method is that the former includes spatial
discretizing errors unlike the latter, Therefore, the number
of collocation points in the former method may affect
comparison between them. Another remark should be
made here; that is, the tau method will lose its usefulness
for complicated multi-dimensional compressible flow
problems, where the collocation method does itself justice.

1.6. Results

In this subsection, we discuss the results obtained with
the abovementioned methods, and we first examine the dis-

M

-1 U—\- 4

FIG. 3. Spatial distribution of du(x, t}/dd, _ (¢} by the tau method
for N=16.
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TABLEI

Errors at Collocation Points for N =16

x -1 -0.924 —0.707 9 G707 0.924 i
u, 374(—2y 216(—2) 343(—2) 203(-L) 343(-2)  216(—2) 374(-2)
u,, —6.26{0) 220(-1) 210(—1) 193-15} —210{~1) =220 —%) 6.26(0)

cretizing error of the collocation method. In Tables I and 11
the errors of the first and second derivatives u, and u,, for
the initial values at seven collocation points are listed for
N=16 and 32, respectively. It is seen that the worst
accuracy of u, occurs at the center, x = 0, where the colloca-
tion points are coarsely distributed. In contrast, the worst
accuracy of u ., occurs at the two boundaries, x= —1and 1,
whose errors are considerably larger than those at internal
points. The reason for this is that the second derivative
needs more information from both directions, which is dif-
ficult to satisfy at boundaries. Therefore, in our collocation
algorithm, the boundary values at each time-step are
imposed directly from boundary conditions without
integrating the governing equation up to the boundaries.

Next we compare the accuracy of the three techniques
by the collocation method: the first-order extrapolation
method, the highest coefficient adjustment method, and the
global coefficient adjustment method. The computations are
at first performed for the collocation number ¥ =16, and a
time increment At = 107" is chosen to be so small that the
accuracy is not influenced by it. Those results are referred to
as Cases I, I1, and III, respectively.

Since the test problem has an unsteady convergent solu-
tion, it is necessary to examine the time variation of
accuracy. Figures 4 to 6 correspond to Cases I, II, III,
respectively. The abscissa indicates the time-step number,
while the ordinate represents two different quantities on
logarithmic scale: average error and adjusted quantity. The
thick line is the time history of the average error, defined as

II!:l’l'(ﬁll'('t) = Jﬁl [u(x, I) - u(x9 I)EJ(HC[J2 dx' (37)

The thin line shows the time history of the absolute value of
adjusted quantity, namely,
|du(—1, )] = [u™(=1, 1) —u®(—1, 2} (38)

TABLE It

Errors at Collocation Points for ¥ =32

x -1 —0923 —-0.70% 0 0.707 0.924 1
u, 498(—4) 28N —4) 454(—4) 270(-3) 454(—4) 287(—4) 498{-4)
u,, —339(—1) 292(=3) 277(—3} =518(~15) =277(-3) —-282(-3} 33%-1}
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N =18
6'F — Uy At = 0.00001
— lau(—1,t)| t = 1.00000

00 20 40 60 80
k

10.0
*10%)

FIG. 4. Time histories of average error and absolute value of adjusted
quantity for the first-order extrapolation method: N =16 and 41 = 10-2,

Note that for the highest coefficient adjustment method, it
becomes

|du(—1, )] = a5 (6) — a3 (). (39)
Sudden decreases in the value of the thin line are due to the
change in sign.

Comparing the thin lines, which are the adjusted values,
they show the same behavior and have roughly the same
magnitudes of order. On the other hand, the thick lines,
namely the average errors, are remarkably different. In the
early stage the accuracy of Casel is better than that of
Case I, but this is reversed after approximately ¢=0.5.
Case I shows almost a constant value, while Casell
decreases as time goes on. The average error of Case Il

= N=16

G — U At = 0.000071
¥ |[Auf—1,t)] t = 71.00000
1

0y

00 20 40 60 80
k

106
*10%)

FIG. 5. Time histories of average error and absolute value of adjusted
quantity for the highest coefficient adjustment method: N=16 and
Ar=10""
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N =16
o — At = 0.00001
— lAu(—1,t)] t = 1.00000

20 4.0 60

80

100
*10%)

k

FIG. 6. Time histories of average error and absolute value of adjusted
quantity for the global coefficient adjusiment method: N=16 and
Ar=10"%

maintains the same level after a decrease at the beginning
and is lower than those of Cases I and I1. At f= 1, the errors
of Cases IT and III are very close. Thus the superiority of
Case III is obvious at least up to 1= 1.

The spatial error distributions at r=0.5 are shown in
Figs. 7 to 9, corresponding to Cases I, 11, and IH, respec-
tively. The solid line shows the exact solution, and the
dashed line shows the numerical solution. In Case I, there
exist large displacement errors, and the errors in Case I1
include an amplification of wave. The average error of
Case II1, however, is about one order of magnitude smaller
as compared with the former two cases.

These results show an excellent property of the gicobal
coefficient adjustment method. However, it i1s not yet

N = 16 o
—— exact apd- At = 0.00001
- - numerical + t = 0.50000

FIG. 7. Spatial distributions of numerical and exact solutions at
t=0.5 for the first-order extrapolation method; N=16 and 4t=10"%
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N =18 L9
— exact 40+ Af = 0.0000f7
- numerical T t = 0.50000

A
\

FIG. 8. Spatial distributions of nurerical and exact solutions at
t=05 for the highest coefficient adjustment method: ¥ =16 and
Ar=10""%

answered whether this method maintains the spectral
accuracy. To examine this, the number of collocation points
is increased from N =16 to 32, and the time increment is
reduced to 4¢= 1077, which is sufficiently small to keep the
converged behavior of errors. Since the cpu time and data
storage arc limited, we just make a comparison between the
above-mentioned three techniques up to t=0.1, which are
referred to as Cases IV, V, and VI, respectively. As shown in
Fig. 10, the average error of the extrapolation method takes
low values at first, and then increases, approaching the level
of Casel in Fig. 4. For the highest coefficient adjustment
method, the errors in Fig. 11 have the same order of
magnitude with Case II in Fig. 5; that is, the accuracy was
not improved by increasing the number of collocation

N =16 1o
— ezxact 40+ At = 0.00001
- - numerical + t = 0.50000
204
U
I 4 +—— 4—0.0 } {—r— ‘ A
-10 -05 oo 05 10
1 T
-2_0._
_4.0"

FIG. 9. Spatial distributions of numerical and exact solutions at
:=10.5 for the global coefficient adjustment method: N = 16 and 4t = 1077
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N = 32
6y — T, At = 0.0000001
— |au(=1,1)| t = 0.1000000

) 20 40 60 80 100
(*10%)
k

FIG. 10. Time histories of average error and absolute value of
adjusted quantity for the first-order extrapolation method: ¥N=32 and
Ar=10"7,

points and decreasing the time increment. Therefore, both
the extrapolation method and the highest coefficient adjust-
ment method cannot be considered to maintain spectral
accuracy. In contrast, the accuracy of Case VI in Fig. 12 is
much better than the former two cases and is two orders of
magnitude lower than Case III in Fig. 6.

Furthermore, in order to examine the influence of time
increment, we calculated Cases VII and VIII with the global
coeflicient adjustment method for N =16. The time incre-
ment is set to 1073 and 107, for which results are shown in
Figs. 13 and 14, respectively. Comparing Figs. 12 to 14, the
following key issues are found: (1) the adjusted quantity is
in proportion to the time increments; (2) the error for a
given number of collocation points does not change if the

N = 32
W'y — ’L_Lm At = 0.0000001
— |Au(=1.t)] t = 0.1000000

00 20 40 6.0 80 1(9.0

10%)
k

FIG. 11. Time histories of average error and absolute value of
adjusted quantity for the highest coefficient adjustment method: N =32
and 41=10"".

167

¥ N =32
ot — At = 0.0000001
£ - lAu(—1,t)] t = 0.1000000
10y

2.0 20 4.0 60 80

k

FIG. 12. Time histories of average error and absolute value of
adjusted quantity for the global coefficient adjustment method: ¥ = 32 and
A=10""

100
~10%)

time increment is sufficiently smail; (3) the error is affected
not by the adjusted quantity but by the number of colloca-
tion points; and (4) the average error is reduced more than
two orders of magnitude by doubling the number of colloca-
tion points. These characteristics verify that the spectral
accuracy is obtained in the global coefficient adjustment
method.

Finally, we compare the tau method explained in Subsec-
tion 1.5 with the coliccation method. Figures 15 and 16
show the results for the tau method with the truncation term
number N = 16 and 32, which are denoted as Cases IX and
X, respectively. Since the tau method has two degrees of
freedom in coefficients: 4dy _ | and A, their time histories
are also plotted as two thin lines.

N =16
W — U, At = 0.0000001
— lau(—1,¢)| t = 0.1000000

00 2.0 40 8.0 80 10.0 s
k 107}

FIG. 13. Time histories of average error and absolute value of
adjusted quantity for the global coefficient adjustment method: N =16 and
dr=10"".
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At = 0.00007
t = 0.10000

0.0 20 40 6.0 80 10.0 4
k (107}

FIG. 14, Time histories of average error and absolute value of
adjusted quantity for the global cocfficient adjustment method: ¥ = 16 and
At=10"%

In regard to the average errors, Cases IX and X are worse
at first than Cases III (Fig. 6) and VI (Fig. 12), but become
better after a short time. It is noted that the adjusted
quantities of the tau method decrease more quickly. The
reason for this is as follows: Since the time integration of
Eq. (32) considers the effects at boundaries, and, further-
more, the solution converges to zero, the adjusted quantities
determined by Eqgs. (33) and (34) may become extremely
small. In contrast, discretizing errors exist in the collocation
method, and the solution at x= —1 is obtained by the
global coefficient adjustment method, instead of the time
integration of Eg. (12) there. Thus, the adjusted quantities
may have the same order of magnitude of variations as
those at internal collocation points.

r N =16
0E — q],m At = 0.00007
i — |aw, | t = 1.00000
0y
: 3
104
T
0"
00 20 40 60 80 10.0
i {*10%)

FIG. 15. Time histories of average error and absolute value of
adjusted quantity for the tau methed: N =16 and 4r=10"2,
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At = 0.0000001
t = 0.17000000

40 60 890 00,
*10
k (*10%)

FIG. 16. Time histories of average error and absolute value of
adjusted quantity for the tau method: N=32 and 4¢=10"".

PART 2: APPLICATION TO VISCOUS
HIGH SPEED FLOWS

2.1. Governing Equations

In order to calculate the high-speed flows around a
sphere, the following axisymmetric compressible Navier—
Stokes equations written in spherical coordinates are
utilized: '

Q,+E+Fs+5=0, (40)

P pu

2

U —a,
, E=|’
pr POU— 0,
e;u—kT,

{1/r) po
(1/r){puv — 04}
(1/"}{.01’2 - Uaa}

L (1/r){e;v—(1/r) xTs}

— p(2u+vcot B)r

{p(2u’ + wv cot 6 — v*)— 20,
— G, Ot @+ 0gg+ 04y )/

{p(3uv + v’ cot 8)—3a,, ,
—oGgpcot O+ a4, cotB}/r

{e,(2u+vcot 9} —2«T,— (1/rycot 8 xTy}/r

|+ pVv—2 .

where p, p, T, and ¢, are density, pressure, temperature, and
internal energy per unit volume, respectively, r, 0, and ¢ are
the spherical coordinates, and the subscripts r, 6, and ¢
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represent derivatives with respect to those values. v is the
velocity vector, whose radial and tangential components are
u and v, respectively; v is the ratio of specific heats.

The relations between sresses and strain rates are defined
as

O = _(l/?)p'*'zu{ur*%vv}a
0go=—(1/y) p+ 2u{(1/r) v+ ufr — 3V -v},

41
045=—{1/y) p+2ulufr+vcot 8/r—3V-v}, 1)
O-r9=0-6'r=u{vr+(1/r) ug—l)/r},
where
Vev=u+(1/r) vy + (2u+ v cot B)/r. (42)
The dissipation function is
@ =pu[2ul+2{(1/r) vg+u/r}*
+ (u/r + v cot 8/r)?
+ {0+ (1r)up—v/r}?
—2{V.v}?2] (43)

The viscosity coefficient u is approximately calculated by
Sutherland’s formula

p=Re ' M T + /T )T+ C/T,), (44)
where C=120K and T, =288.15 K, Re is the Reynolds
number, and M, is the Mach number of the free stream.
The thermal conductivity x is given as

k={y—1)""Pr !y, (45)

where Pr is the Prandtl number, and is set to 0.72 in the
present study. The pressure is calculated from the internal
energy, assuming a calorically perfect gas, as

p=y(y—1)e,. (46)
In addition to the above equations, the state equation is
necessary to calculate the temperature

T=p/p. (47)

In the above equations each quantity is made non-dimen-
sional by the corresponding reference values: the length #,,
the density p,, the pressure (1/y) p . a?, . the temperature
T, the internal energy p. a2, the velocity a,, the
viscosity coefficient p_ r,a.,, and the thermal conductivity
(y—1) pa.rsc,. Here r, denotes the radius of a sphere, 4
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is the speed of sound, ¢, is the specific heat at constant
pressure, and the subscript oo denotes the values in a free
stream,

2.2, Coordinate Transformation

A shock-fitting technique is applied in the present study
to treat the shock wave, where the shock wave is regarded
as a boundary which goes on moving until convergence
is reached. Thus, the computational region is confined
between the shock wave and the body surface in the radial
direction and between the axis of symmetry and the
downstream boundary in the tangential direction. Moretti’s
transformation [16] is used to have a square computational
region,

X=(r_rh]/{rs(89 t)’rb}:
(rp<r<r,0€X<1),
¥= (n_g)/emax’

(n—0,,<0<m,0<Y<1),

(48)

where r, is the radial coordinate of shock wave, and 6, is

the angle between the axis of symmetry and the downstream

boundary and is set to 80° in the present study. Incidentally,

f is an angle from the x axis which is the same direction as

the main stream. Therefore, 8 = 7 points to the upstream.
The metrics are derived from Eq. (48) as follows:

X =[r(0,0—r, 17" Xo=—XX,r 4,
X(: '_Xerx,u (49)
Yr=0’ Y9= “(gmax)_'ls Yr=0-

These metrics are constants or can be easily calculated,
except that r,, is calculated by the one-dimensional
Chebyshev spectral method.

Suppose that Q(r, 8, 1) is a solution variabie in Eq. (40);
then its spatial derivatives can be transformed to those with
regard to X and Y coordinates as

Qr = Q)(‘Xr »

Qo=0xXo+QyY,, (50)

where Q, and Q, are calculated by the two-dimensional
Chebyshev collocation method.

2.3. Two-Dimensional Chebyshev
Collocation Method

The global function Q(X, Y,!) is expanded by the
Chebyshev polynomials as

N M
QX Y, =% Y O,ft)cosmacosnf, (51)

n=0 m=0
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where M+ 1 and N+ 1 are the numbers of collocation

points in the X and Y directions, respectively. a and f are

related to X and Y through
X=(1—cos«)/2
Y=(1-cos )2

O<a<n 0<X<1),

(52)
0<h<n 0<YL)

Then the spatial derivatives are obtained by using inverse
transforms as follows:

N M
Ox(X, Y, )==-2% % QL) cosmxcosnp,

n=0 m=0 (53)
0,(X. Y, 1)==-2 2 Z Q9 D(¢) cos mx cos nf.

n=0 m=0

The coefficients O{.%(z) and @'%'(:) have recurrence
relations with {0, (1) in the same fashion as Eq. (5),

QELTz)ﬁ 2(m+ 1)Q(m+l)n
O<m<M—1),

1,0 Lo
Q( '= QEMil)n

Q(l N -

C (Oi)_ A0, 1) 2 ] A (54)
Q mine2y T 200+ 1) Qg 1)
0gngEN-1),
Qw”_st?(}lV+l)
where
C.— 2 m=0or M,
L lsmEM—1,
(55)
n=0o0rN,

2
C”_{1

For discretization, the collocation points are defined by

l€ngN-1L

(i=05 15 it ] M):
(j= 0’ I’ b} N)’

X:= {1 —cos(ni/M}}/2

56
= {1—cos(mj/N)}/2 )

where M and N are chosen to be integers of two raised to the
nth power. The coefficients ,,, and the spatial derivatives
0O, and Q, are calculated by using the fast Fourier trans-
form (FFT).

All of the spatial derivatives included in Eq. (40) are
transformed to the form of Eq. {50) and calculated by the
spectral collocation method. Operations other than spatial
derivatives are performed in physical space.

For the time integration of the governing equation,

Q1+LQ=0! (57)
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an explicit predictor—corrector scheme [87 is utilized as

O=(1-41L*) Q"

~ (58)
Q=3[0+ (1 -4 1)0],
where the superscript k denotes the value at the kth time
step.

2.4. Boundary Conditions

The body surface is regarded as a non-slip and adiabatic
wall: u=v=p,=Ty=0. The conditions for symmetry
are imposed at the axis of symmetry (Y=0), v=u,=
py=-¢ey=0. Since the flow is supersonic at the downstream
boundary except ncar the wall, the solutions there are
determined by its upstream properties. Accordingly it is not
necessary to explicitly impose the boundary conditions, and
the values at the boundary can be calculated in the same
fashion as those at the internal grid points.

The shock wave surface is a moving boundary, and its
initial location is given as a parabola in the present study,
which should be set properly to prevent divergence of the
solution. The shock-fitting technique [18] is composed of
two stages. The first stage is to move the shock wave, using
the solutions at a new time-step. The moving speed of the
shock wave V| is determined by the relation

Vo= (p2

where |u,, | is the component of free-stream velocity normal
to the shock wave, and the subscript two denotes values
immediately downstream of the shock wave. The second
stage is performed after moving the shock wave to a
new location. The boundary conditions immediately
downstream of the shock wave are calculated by the
Rankine—Hugoniot relations.

With regard to the above-mentioned boundary condi-
tions, the Dirichlet conditions are directly imposed on the
solutions, while the Neumann conditions are given by the
global coefficient adjustment method discussed in Part 1.
The extension from one-dimensional to two-dimensional
problems is straightforward because each Neumann
condition can be enforced one-dimensionally. To avoid
repetition, the Neumann conditions are not imposed in the
Y direction at the two grid points where the body and the
shock wave intersect with the axis of symmetry.

= {0 =)y} — (59)

|u1n|'

2.5. Filtering

Filters are used in the spectral collocation methods to
damp the amplification of high frequency disturbances, like
the artificial viscosity in the finite difference method. The
differences between them are: (1) the former has a global
effect but the latter has a local one; (2} the former is imposed
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in spectral space but the latter, in physical space. Since
aliasing errors occur and nonlinear waves are always
produced and propagate between the body surface and the
shock wave, it is necessary to filter solutions in order to keep
them smooth and prevent the onset of mstability.

The filtering operation in the present code is expressed as

N M

O, Y,0=Y Y alm)ain) Q,,(t) cos ma cos np,

n=0 m=0

(60)

where ¢ is a smoothing function which is unity at lower
frequencies and tends to zero toward higher ones. In this
paper, the modified form of the raised cosine filter [17] is
used, which is defined by

1 (m<m).
{1 +cos[r(m—m ) (M—m])]}
{(m.<m< M).

ag(m)=

(61)

This smoothing function changes gradually from one to
zero when m is larger than m_, so that the strength of
smoothing is controlled by the critical frequency m,.
Generally it is not necessary to filter the solutions at every
time-step if the ampiification of disturbance does not grow
too fast. The filtering process is significantly associated with
accuracy and stability. If the time interval of filtering is too
long or the filter is too weak, the instability will occur.
Conversely if the time interval of filtering is too short or the
filter is too strong, the accuracy will deteriorate. This is a
contradiction, and in order to have a stable solution, the
accuracy has to be sacrificed to some extent.

2,6, Results

In the present study, we applied the spectral collocation
method to solve the viscous high-speed flows around a
sphere, and we performed the computations on the
FACOM VP-200 vector computer. Since there exist rapid
changes in the temperature and velocity distributions in the
boundary layer, more elaboration is needed to obtain good
accuracy for viscous flows than is needed for inviscid flows,
Without success we have attempted to satisfy the Neumann
boundary conditions by linear extrapolation or adjusting
the highest coefficient. This may be due to the insufficient
accuracy of these two methods. Consequentiy the global
coefficient adjustment method described in Part 1, is suc-
cessfully applied to treat the Neumann boundary conditions
for the present problem.

We first compare the resolutions for different grid num-
bers, where the free-stream Mach number and Reynolds
number are set to four and 4000, respectively. The
parameters for the cases with the collocation point numbers
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TABLE 111
Data for Different Cases

Mach Grid  Time step Time step interval Critical
number  size Ar for filtering wave number
4 1717 0.0008 2 9
4 33x33 000025 3 14
8 33x33  0.00008 3 10

M=N=16 and 32 are shown in Table III. The critical
wave number at M _=4is 9 for M=N=16, and 14 for
M = N =32, implying that about half of the terms have to
be filtered. The time increment must be decreased from
0.0008 to 0.00025, as the number of collocation points is
increased from 16 to 32. The non-linear change in the time
increment is due to the non-uniform distribution of the
Chebyshev—Gauss-Lobatto points, where the minimum
grid interval is inversely proportional to the square of the
number of collocation points.

The resulting velocity vectors for M = N =16 and 32 are
shown in Figs. 17 and 18, respectively. In both cases, the
shock wave locations are almost the same and the velocity
vectors are quite similar, where the velocity boundary layers
are clearly captured. It is very convenient that the colloca-
tion points become fine at both boundaries, body and shock
wave, because good resolution is required there,

In Figs. 19 and 20, the temperature distributions in the
radial direction are illustrated, corresponding to the above
two cases: the grid number M = N =16 and 32. The three
lines correspond to # =0°, 40°, and 80°, respectively. Note

Velocity
M=N=18

Mo=4
Re=4000

FIG. 17. Velocity vectors for M = N =16, M, =4, and Re = 4000.
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Velocity
M=N=32

M.=4

FIG. 18. Velocity vectors for M=N=132, M_ =4, and Re =4000.

that & represents an angle from the upstream direction,
which is different from the previous definition. The tem-
perature increase near the wall is due to the thermal bound-
ary layer under the adiabatic condition. The close-up figures
are depicted in the circles by 10 times enlarging the scale of
the abscissa. Although the results for the two different grid
numbers have similar characteristics, the difference in each
resolution is obvious.

Furthermore, let us examine the residuals for these two

6.0 ‘ M=N=16
ﬂ M, =4
. Re=4000
0= 0°
I W
3 R p=40°
o
=~
& 8=80°
5 Lo
[
0_0 1 1 1 1 ]
1.0 1.2 I 1.6 1.8 2.0

FIG. 19. Distributions of temperature along radius at these stations
for M =N=16, M, =4, and Re = 4000.
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6.0 ‘ M=N=32
S Mo=4
. Re=4000
o= 0°
E o
3 \ §=40°
o =
3
S
R, 6=80°
5 2
L
0.0 : - - . ,
1.0 1.2 1.4 1.6 1.8 2-0

FIG. 20. Distributions of temperature along radius at these stations
for M=N=32, M, =4, and Re = 4000

cases, which are illustrated in Figs. 21 and 22. The abscissa
indicates the time-step number, and the ordinate indicates
the maximum absolute residual of density on the
logarithmic scale. The residual has a close relation with the
filter, which affects the oscillation band and the convergence
level of the residual. Since the filter is not performed at every
time step, the non-linear waves are generated at the non-
filtering steps. This is the reason for the oscillation band of
the residual, If the coefficients are filtered more than the

M=N=186
. M.=4
10 Re=4000

0.0 4.0 8.0 12.0 16.0
Step

20.0
e10h)

FIG. 21. Time history of maximum residual of densily for M = N =16,
M =4, and Re =4000.
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TABLE IV
Comparison between SCM and FDM

Method Absolute error of 7T5(%) CPU time (s}
SCM 0.18 274
FDM 037 37

magnitude of residual, the convergence process of the
residual will be strongly influenced by filtering. An example
for this is seen in Fig. 21, where the grid numbers are
M = N =16, and the critical wave number m_ is set to 9. In
contrast, if the filtered coefficients are considerably small
compared to the residual, the convergence process of the
residual will be dominated by the unfiltered modes, and the
convergence rate is faster than the former. This is seen in
Fig. 22, where M =N =32 and m_=14. The convergence
level of the residual implies the balance between the stability
due to filtering and the resolution determined by the
number of collocation points, The converged residuals are
about 3 x 10~ *and 5 x 10~ * for N = 16 and 32, respectively.
This also demonstrates that the spectral accuracy is
obtained in the present code.

Next we compare the present results with those by a finite
difference code. The conditions between them are all the
same except that the governing equations of the latter are
axisymmetric Navier—Stokes equations transformed from
Cartesian coordinates to generalized ones. Figures 23 and
24 show the Mach number contours of these two methods
at Re=4000, M, =4, M = N=16, respectively. Both the
location of the shock wave and the contours are rearly the

M=N=32
Mo=4
10 Re=4000
3 .
g0
5
1™ .
% ) k|
0.0 ﬂ-io B.0 12.0 16.0 20.0

Step ce10”y

FIG. 22. Time history of maximum residual of density for M = N =32,
M, =4, and Re =4000.
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Mach Number
M=N=18

Muo=4
Re=4000

FIG. 23, Mach number contours for M=N=16, M_,=4, and
Re = 4000 by the spectral collocation method.

same, and we cannot judge which one is more accurate. The
difference between them appears if we examine the data in
detail. Table 1V shows the absolute errors of the numerical
results to the theoretical value for the stagnation tem-
perature. The absolute error of the finite difference code is
about two times larger than the present code. In the same
table, the cpu times on the FA COM VP200 are also
illustrated, Although the fast Fourier transform subroutine
is modified for vectorization, the present code takes seven
times as much cpu time as the finite difference code.

Mach Number
M=N=18

Moo=
Re=4000

FIG. 24, Mach number contours for M=~N=16, M =4, and
Re = 4000 by the finite difference method.
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Finally, we make comparisons of the results of the
spectral collocation code with the experimental data. We
conducted an experiment for A, =8, using the shock
tunnel at Nagoya University. The distribution of the
pressure coelfficient ratio is measured from the dynamic
pressure along the body surface and the shock wave loca-
tion is obtained from a Schlieren photograph. Furthermore,
for comparison, an experimental data for M _, =4 is taken
from Ref [19]). Figure 25 shows the distributions of the
pressure coefficient ratio, C,/C,__ , where both calculations
and experiments are included. The result -of the modified
Newtonian theory is also illustrated by a solid line. It is seen
from the numerical results that the Mach number has
almost no influence on the pressure coefficient ratio. This
represents the Mach independence principle in the hyper-
sonic flow. Except for a slight difference in the downstream
at M_ =4, the agreement between the numerical and
experimental results is excellent. Moreover, the modified
Newtonian theory provides a good approximation to other
data in the region 0 < 8 € 60°.

In Fig. 26, the shock wave locations for M, = 8 obtained
by the calculation and the experiment are compared. The
difference between them becomes remarkable toward
downstream, and the former is located in front of the latter.
The reason for this is that the calculated displacement thick-
ness of the boundary layer is considerably thicker than that
of the experiment due to the difference in Reynolds number:
4000 for the former and 314,000 for the latter. It can be con-

1.2
- Ma:ld'r'.ﬁed }:Vewtonifa.n
1. Oy - ------------ ----------- O;&Eculatﬁ'on --------
: ‘ o M4
D Mo=6
B e i R Sl g
E Efa:peﬁmént
o 0 Mo=d
\n. .6 i -"”‘-J‘:-’«“"-Mo‘a$-8""---—
o.u[ ------------------------ P, W L
[ R R ;' ........... 1:'. B, ... E--., ........
. .E v *
0.0 -
e.0 20.0 40.0 BG-C 80.0

FIG. 25. Comparison of pressure coefficient ratio versus ¢ between
modified Newtonian theory, numerical calculations, and experiments.

WANG, NAKAMURA, AND YASUHARA

M=8

Calculalion
Re=4000

Ezxperiment
Re=314000

FIG, 26. Locations of bow shock wave at M, =8; calculation is at
Re = 4000 and experiment is at Re = 314,000,

cluded that those two results have a marginal agreement,
although detailed discrepancy is seen to be due to the
difference in parameters.

CONCLUDING REMARKS

The global coeflicient adjustment method originated in
the requirement of treating Neumann boundary condittons
stably and accurately. Neither the extrapolation method
nor the highest coefficient adjustment method lead to
satisfactory results in complicated problems. The principle
of a new technique proposed in the present study confines
the influence of imposing the Neumann boundary condition
to the neighborhood of a boundary in physical space. The
derivation in Subsection 1.3 shows that all of the coefficients
should be adjusted to meet this requirement. This is natural
because the solution at any particular point is made up of ail
the spectral modes. Furthermore, since the global coeflicient
adjustment method is characterized by the spectral expan-
sion, it is very stable and keeps the spectral accuracy.

The nonlinear property of viscous compressible flows
makes it difficult to obtain good accuracy in a boundary
layer. Therefore, we developed a compressible Navier—
Stokes equations code for high-speed flows around a sphere
by the spectral coliocation method, where the global coef-
ficient adjustment method was applied to treat Neumann
conditions accurately. Comparisons between the resuits for
two different numbers of collocation points show that the
new technique works well and that spectral accuracy is also
obtained. Good accuracy of the present code is also verified
by comparing the result of the finite difference code with
that of a shock tunnel experiment.
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From the above-mentioned, the global cocfficient adjust-
ment method, which was verified to be effective in a
fundamental test problem, it was also ensured to be useful
in solving Navier—Stokes equations. Otherwise, any reliable
solution will not be available for this problem by the
spectral method.
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